Various topological forms of Von Neumann regularity in Banach algebras

Authors

  • G. Esslamzadeh
  • M. Shadab
Abstract:

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and certain weakly amenable Banach algebras while it excludes measure algebras, of certain locally compact Abelian groups. Moreover, we show that in a unital amenable Banach algebra, principal regularity implies topological regularity. Finally, we use topological regularity to obtain some information about hereditary $C^*$-subalgebras of a given $C^*$-algebra.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

various topological forms of von neumann regularity in banach algebras

we study topological von neumann regularity and principal von neumann regularity of banach algebras. our main objective is comparing these two types of banach algebras and some other known banach algebras with one another. in particular, we show that the class of topologically von neumann regular banach algebras contains all $c^*$-algebras, group algebras of compact abelian groups and cer...

full text

Strong Topological Regularity and Weak Regularity of Banach Algebras

In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...

full text

strong topological regularity and weak regularity of banach algebras

in this article we study two different generalizations of von neumann regularity, namely strong topological regularity and weak regularity, in the banach algebra context. we show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. then we consider strong topological regularity of certain concrete algebras. moreover we obtain ...

full text

Banach algebras satisfying the non-unital von Neumann inequality

There is a Banach algebra satisfying the von Neumann inequality for polynomials in a single variable, without constant term, which is not isomorphic to a norm-closed algebra of operators on a Hilbert space.

full text

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

von Neumann Algebras

For every selfadjoint operator T in the Hilbert space H, f(T) makes sense not only in the obvious case where / is a polynomial but also if / is just measurable, and if fn(x)-+f(x) for all x£R (with (/,) bounded) then fn(T)-+f(T) weakly, i.e. <fn(T)£9i)+<f(T)£9ti)V£9fiCH. Moreover the set {f(T)9 f measurable} is the set of all operators S in H invariant under all unitary transformations of H whi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 37  issue No. 3

pages  159- 170

publication date 2011-09-15

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023